Ejemplos de Binomios al Cuadrado

Inicio » Matem√°ticas » Binomios al Cuadrado
Autor: Redacci√≥n ejemplosde.com, a√Īo 2020

En álgebra, el binomio al cuadrado es el producto notable en el que un binomio se multiplica por sí mismo. Se escribe de esta forma:

(x + a)2 = (x + a)*(x + a)

La fórmula que se sigue para resolver esta operación es:

Cuadrado del primer término,

más el doble producto del primero por el segundo,

más el cuadrado del segundo.

Se desarrolla de la siguiente manera:

(x + a)2 = (x)2 + 2 (x) (a) + (a)2

x2 + 2ax + a2

Ya está establecida esta regla. No es necesario multiplicar término a término ni reducir productos. El resultado final son tres términos, llamados trinomio cuadrado perfecto. Si se puede identificar este trinomio en un problema, se sabrá de qué binomio proviene.

Comprobación:

(x + a)2 = (x + a)*(x + a)

= (x)(x) + (x)(a) + (a)(x) + (a)(a)

= (x)(x) + 2(a)(x) + (a)(a)

= (x)2 + 2 (a)(x) + (a)2

x2 + 2ax + a2

Ejemplos de binomio al cuadrado

  1. (x + 1)2 = (x)2 + 2 (x) (1) + (1)2 = x2 + 2x + 1
  2. (x + a)2 = (x)2 + 2 (x) (a) + (a)x2 + 2ax + a2
  3. (x2 + y)= (x2)2 + 2 (x2) (y) + (y)x4 + 2x2y + y2
  4. (a + b)2 = (a)2 + 2 (a) (b) + (b)a2 + 2ab + b2
  5. (y – 3)2 = (y)2 + 2 (y) (-3) + (-3)y2 – 6y + 9
  6. (b + 2c)2 = (b)2 + 2 (b) (2c) + (2c)b2 + 4bc + 4c2
  7. (x – 7)2 = (x)2 + 2 (x) (-7) + (-7)x2 – 14x + 49
  8. (xy + 2)2 = (xy)2 + 2 (xy) (2) + (2)x2y2 + 4xy + 4
  9. (wx – yz)2 = (wx)2 + 2 (wx) (-yz) + (-yz)w2x2 – 2wxyz + y2z2
  10. (a – 1)2 = (a)2 + 2 (a) (-1) + (-1)a2 – 2a + 1

Sigue leyendo:

Citado APA: (A. 2012,11. Ejemplos de Binomios al Cuadrado. Revista ejemplosde.com. Obtenido 11, 2012, de https://www.ejemplosde.com/5-matematicas/1426-ejemplo_de_binomios_al_cuadrado.html)

Autor: Redacci√≥n ejemplosde.com, a√Īo 2020

Deja un comentario


Acepto la política de privacidad.